管理复杂的 GenAI 管道(尤其是具有多个模型和数据源的管道)可能是一项艰巨的任务。本文演示了如何将 LlamaIndex 与 Qdrant 和 MLflow 集成以简化 GenAI 应用程序的管理和部署。你将探索 MLflow 的功能(例如跟踪、模型打包和评估)如何实现 LlamaIndex 引擎的无缝处理。通过逐步实施,了解如何简化检索增强生成 (RAG) 工作流程、确保性能一致性并优化索引系统以实现更好的可扩展性和效率。 1、系统架构该架构集成了多个关键组件,以构建高效且可扩展的检索增强生成 (RAG) 系统。其核心是利用 LlamaIndex 进行索引和检索、利用 Qdrant 进行矢量存储和搜索以及利用 MLflow 在整个生命周期内注册、服务和跟踪所有组件的模型。这种设计旨在管理来自各种来源的大量数据,同时确保最终用户能够快速检索和准确推理。 管道从提取来自各种来源(例如 Web 文档、内部文档和数据库记录)的文档开始。这些文档由变更数据捕获