Tagged

HUGGINGFACE

A collection of 52 posts

开发第一个深度学习应用
DEEP LEARNING

开发第一个深度学习应用

我从事数据分析工作已经近十年了。我时不时地会使用机器学习技术从数据中获取见解,而且我习惯使用经典机器学习。 虽然我通过了一些关于神经网络和深度学习的 MOOC,但我从未在工作中使用过它们,而且这个领域对我来说似乎相当具有挑战性。我有这些偏见: 你需要学习很多东西才能开始使用深度学习:数学、不同的框架(我至少听说过其中三个:PyTorch、TensorFlow 和 Keras)和网络架构。需要大量数据集才能拟合模型。如果没有强大的计算机(它们还必须有 Nvidia GPU),就不可能获得不错的结果,因此很难进行设置。要启动和运行由机器学习驱动的服务,需要很多样板:你需要处理前端和后端。我认为分析的主要目标是帮助产品团队根据数据做出正确的决策。如今,神经网络绝对可以改善我们的分析,即 NLP 有助于从文本中获得更多见解。因此,我决定再次尝试利用深度学习的力量会很有帮助。 这就是我开始学习 Fast.AI 课程的方式(该课程于 2022 年初更新,因此我认为自 TDS 上之前的评测以来内容已经发生了变化)。我意识到使用深度学习解决您的任务并不那么困难。 本课程遵循自上而下的方法。因此,你从构建一个工作系统开始,然后才能深入了解所有必要的基础知识和细微差别。

Gemini目标检测实测
MODEL-ZOO

Gemini目标检测实测

我们熟悉 Gemini 令人印象深刻的多模态能力,尤其是在推理图像数据时——无论是字幕、OCR、分类还是识别图像中的特定内容。 与其开放模型对手 PaliGemma 不同,Gemini 模型并未专门针对对象检测任务进行训练。这一事实促使我进行了一些实验并撰写了这篇博客。 注意:在这里,当我们谈论对象检测时,我们的意思是通过绘制边界框来识别和定位对象,就像 YOLO、DETR、EfficientDet、Florence-2 和 PaliGemma 等模型一样。所以,事不宜迟,让我们来看看 Gemini 是否可以执行对象检测和定位。如果是,在多大程度上? 1、代码实现我们只需要 Gemini API 密钥—不需要其他任何东西。我假设你已经熟悉 Gemini API。如果还不熟悉,请查看此博客以了解如何在 Google AI Studio 上创建 Gemini API 密钥。